\(\int \frac {x^{7/2}}{(b x^2+c x^4)^2} \, dx\) [333]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 218 \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {x}}{2 b \left (b+c x^2\right )}-\frac {3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}-\frac {3 \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}} \]

[Out]

-3/8*arctan(1-c^(1/4)*2^(1/2)*x^(1/2)/b^(1/4))/b^(7/4)/c^(1/4)*2^(1/2)+3/8*arctan(1+c^(1/4)*2^(1/2)*x^(1/2)/b^
(1/4))/b^(7/4)/c^(1/4)*2^(1/2)-3/16*ln(b^(1/2)+x*c^(1/2)-b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(7/4)/c^(1/4)*2^(1
/2)+3/16*ln(b^(1/2)+x*c^(1/2)+b^(1/4)*c^(1/4)*2^(1/2)*x^(1/2))/b^(7/4)/c^(1/4)*2^(1/2)+1/2*x^(1/2)/b/(c*x^2+b)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {1598, 296, 335, 217, 1179, 642, 1176, 631, 210} \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}-\frac {3 \log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {\sqrt {x}}{2 b \left (b+c x^2\right )} \]

[In]

Int[x^(7/2)/(b*x^2 + c*x^4)^2,x]

[Out]

Sqrt[x]/(2*b*(b + c*x^2)) - (3*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(4*Sqrt[2]*b^(7/4)*c^(1/4)) + (3
*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(4*Sqrt[2]*b^(7/4)*c^(1/4)) - (3*Log[Sqrt[b] - Sqrt[2]*b^(1/4)
*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(8*Sqrt[2]*b^(7/4)*c^(1/4)) + (3*Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x]
+ Sqrt[c]*x])/(8*Sqrt[2]*b^(7/4)*c^(1/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1598

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{\sqrt {x} \left (b+c x^2\right )^2} \, dx \\ & = \frac {\sqrt {x}}{2 b \left (b+c x^2\right )}+\frac {3 \int \frac {1}{\sqrt {x} \left (b+c x^2\right )} \, dx}{4 b} \\ & = \frac {\sqrt {x}}{2 b \left (b+c x^2\right )}+\frac {3 \text {Subst}\left (\int \frac {1}{b+c x^4} \, dx,x,\sqrt {x}\right )}{2 b} \\ & = \frac {\sqrt {x}}{2 b \left (b+c x^2\right )}+\frac {3 \text {Subst}\left (\int \frac {\sqrt {b}-\sqrt {c} x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{4 b^{3/2}}+\frac {3 \text {Subst}\left (\int \frac {\sqrt {b}+\sqrt {c} x^2}{b+c x^4} \, dx,x,\sqrt {x}\right )}{4 b^{3/2}} \\ & = \frac {\sqrt {x}}{2 b \left (b+c x^2\right )}+\frac {3 \text {Subst}\left (\int \frac {1}{\frac {\sqrt {b}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{8 b^{3/2} \sqrt {c}}+\frac {3 \text {Subst}\left (\int \frac {1}{\frac {\sqrt {b}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt {x}\right )}{8 b^{3/2} \sqrt {c}}-\frac {3 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {b}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}-\frac {3 \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {b}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}} \\ & = \frac {\sqrt {x}}{2 b \left (b+c x^2\right )}-\frac {3 \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}-\frac {3 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}} \\ & = \frac {\sqrt {x}}{2 b \left (b+c x^2\right )}-\frac {3 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{7/4} \sqrt [4]{c}}-\frac {3 \log \left (\sqrt {b}-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}}+\frac {3 \log \left (\sqrt {b}+\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {c} x\right )}{8 \sqrt {2} b^{7/4} \sqrt [4]{c}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.59 \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\frac {4 b^{3/4} \sqrt {x}}{b+c x^2}-\frac {3 \sqrt {2} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )}{\sqrt [4]{c}}+\frac {3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt [4]{c}}}{8 b^{7/4}} \]

[In]

Integrate[x^(7/2)/(b*x^2 + c*x^4)^2,x]

[Out]

((4*b^(3/4)*Sqrt[x])/(b + c*x^2) - (3*Sqrt[2]*ArcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])])
/c^(1/4) + (3*Sqrt[2]*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/c^(1/4))/(8*b^(7/4))

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.57

method result size
derivativedivides \(\frac {\sqrt {x}}{2 b \left (c \,x^{2}+b \right )}+\frac {3 \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 b^{2}}\) \(124\)
default \(\frac {\sqrt {x}}{2 b \left (c \,x^{2}+b \right )}+\frac {3 \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 b^{2}}\) \(124\)

[In]

int(x^(7/2)/(c*x^4+b*x^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/2*x^(1/2)/b/(c*x^2+b)+3/16/b^2*(b/c)^(1/4)*2^(1/2)*(ln((x+(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2))/(x-(b/c)^
(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2)))+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/
2)-1))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.89 \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {3 \, {\left (b c x^{2} + b^{2}\right )} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} \log \left (b^{2} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 3 \, {\left (-i \, b c x^{2} - i \, b^{2}\right )} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} \log \left (i \, b^{2} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 3 \, {\left (i \, b c x^{2} + i \, b^{2}\right )} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} \log \left (-i \, b^{2} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 3 \, {\left (b c x^{2} + b^{2}\right )} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} \log \left (-b^{2} \left (-\frac {1}{b^{7} c}\right )^{\frac {1}{4}} + \sqrt {x}\right ) + 4 \, \sqrt {x}}{8 \, {\left (b c x^{2} + b^{2}\right )}} \]

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")

[Out]

1/8*(3*(b*c*x^2 + b^2)*(-1/(b^7*c))^(1/4)*log(b^2*(-1/(b^7*c))^(1/4) + sqrt(x)) - 3*(-I*b*c*x^2 - I*b^2)*(-1/(
b^7*c))^(1/4)*log(I*b^2*(-1/(b^7*c))^(1/4) + sqrt(x)) - 3*(I*b*c*x^2 + I*b^2)*(-1/(b^7*c))^(1/4)*log(-I*b^2*(-
1/(b^7*c))^(1/4) + sqrt(x)) - 3*(b*c*x^2 + b^2)*(-1/(b^7*c))^(1/4)*log(-b^2*(-1/(b^7*c))^(1/4) + sqrt(x)) + 4*
sqrt(x))/(b*c*x^2 + b^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x**(7/2)/(c*x**4+b*x**2)**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.89 \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}}\right )}}{16 \, b} + \frac {\sqrt {x}}{2 \, {\left (b c x^{2} + b^{2}\right )}} \]

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")

[Out]

3/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(
b)*sqrt(sqrt(b)*sqrt(c))) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt(s
qrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + sqrt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + s
qrt(b))/(b^(3/4)*c^(1/4)) - sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(3/4)*c^(1/
4)))/b + 1/2*sqrt(x)/(b*c*x^2 + b^2)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.91 \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b^{2} c} + \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b^{2} c} + \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b^{2} c} - \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b^{2} c} + \frac {\sqrt {x}}{2 \, {\left (c x^{2} + b\right )} b} \]

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")

[Out]

3/8*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^2*c) + 3/8*sqrt
(2)*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b^2*c) + 3/16*sqrt(2)*(b
*c^3)^(1/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c) - 3/16*sqrt(2)*(b*c^3)^(1/4)*log(-sqrt(2)
*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^2*c) + 1/2*sqrt(x)/((c*x^2 + b)*b)

Mupad [B] (verification not implemented)

Time = 12.96 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.29 \[ \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {x}}{2\,b\,\left (c\,x^2+b\right )}+\frac {3\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{7/4}\,c^{1/4}}+\frac {3\,\mathrm {atanh}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{7/4}\,c^{1/4}} \]

[In]

int(x^(7/2)/(b*x^2 + c*x^4)^2,x)

[Out]

x^(1/2)/(2*b*(b + c*x^2)) + (3*atan((c^(1/4)*x^(1/2))/(-b)^(1/4)))/(4*(-b)^(7/4)*c^(1/4)) + (3*atanh((c^(1/4)*
x^(1/2))/(-b)^(1/4)))/(4*(-b)^(7/4)*c^(1/4))